

Recent PHENIX results on direct photon-hadron correlations

Huijun Ge for the PHENIX Collaboration

- \Box High p_T single hadrons
- ☐ Dihadron correlations
 - large surface bias
 - relatively easy to measure experimentally
 - poor calibration of the scattered parton energy

- \Box High p_T single hadrons
- ☐ Dihadron correlations
 - large surface bias
 - relatively easy to measure experimentally
 - poor calibration of the scattered parton energy

- ☐ Reconstructed jets
- ☐ Jet-hadron correlations
 - carry some surface bias
 - better measure of the scattered parton energy
 - challenging background subtraction

- \square High p_T single hadrons
- ☐ Dihadron correlations
 - large surface bias
 - relatively easy to measure experimentally
 - poor calibration of the scattered parton energy

- ☐ Reconstructed jets
- ☐ Jet-hadron correlations
 - carry some surface bias
 - better measure of the scattered parton energy
 - challenging background subtraction

 \Box Direct photon triggered correlations (γ_{dir} -h, γ_{dir} -jet)

- \Box High p_T single hadrons
- ☐ Dihadron correlations
 - large surface bias
 - relatively easy to measure experimentally
 - poor calibration of the scattered parton energy

- ☐ Reconstructed jets
- ☐ Jet-hadron correlations
 - carry some surface bias
 - better measure of the scattered parton energy
 - challenging background subtraction

Direct photon triggered correlations (γ_{dir} -h, γ_{dir} -jet)

Golden channel

- Direct photons
 - Do not interact strongly with medium
 - Yield at high p_T dominated by hard processes
- \square γ_{direct} -h correlation measurement
 - No trigger surface bias
 - Trigger photon p_T most direct measure of the initial parton energy
 - Important complement to other jet measurement
 - different path length dependence
 - different relative contribution from quark vs gluon jets

Direct photon at LO

- > (How) are jets affected by the medium and/or vice versa?
- Where does the lost energy go?
- How do jets fragment?
- Are jets modified in small systems?

- (How) are jets affected by the medium and/or vice versa?
- Where does the lost energy go?
- How do jets fragment?
- Are jets modified in small systems?

Recent γ-h[±] results in a set of different collision systems measured in PHENIX

- Directly measure the modification of recoil jet fragmentation function
- Important to understand inmedium energy loss mechanism
- Constrain models in explaining soft particle production

- (How) are jets affected by the medium and/or vice versa?
- Where does the lost energy go?
- How do jets fragment?
- Are jets modified in small systems?

Recent γ-h[±] results in a set of different collision systems measured in PHENIX

- Directly measure the modification of recoil jet fragmentation function
- Important to understand inmedium energy loss mechanism
- Constrain models in explaining soft particle production

- (How) are jets affected by the medium and/or vice versa?
- Where does the lost energy go?
- How do jets fragment?
- Are jets modified in small systems?

- Probe cold nuclear matter effect
- Test of initial state energy loss hypothesis

Recent γ-h[±] results in a set of different collision systems measured in PHENIX

- ☐ Directly measure the modification of recoil jet fragmentation function
- ☐ Important to understand inmedium energy loss mechanism
- ☐ Constrain models in explaining soft particle production

- (How) are jets affected by the medium and/or vice versa?
- > Where does the lost energy go?
- > How do jets fragment?
- Are jets modified in small systems?
- Baseline measurement to compare with HI case
- Test of QCD factorization breaking

- ☐ Probe cold nuclear matter effect
- ☐ Test of initial state energy loss hypothesis

Recent γ-h[±] results in a set of different collision systems measured in PHENIX

- Directly measure the modification of recoil jet fragmentation function
- ☐ Important to understand inmedium energy loss mechanism
- ☐ Constrain models in explaining soft particle production

- > (How) are jets affected by the medium and/or vice versa?
- ➤ Where does the lost energy go?
- > How do jets fragment?
- Are jets modified in small systems?
- ☐ Baseline measurement to compare with HI case
- Test of QCD factorization breaking

- ☐ Probe cold nuclear matter effect
- ☐ Test of initial state energy loss hypothesis

- ☐ Test CNM effect
- ☐ Explore dependence on collision system sizes

Recent γ-h[±] results in a set of different collision systems measured in PHENIX

Measure Ydir-hin PHENIX: Experimental Setup

Electromagnetic Calorimeters

$$\frac{\sigma_{PbSc}(E)}{E} = \frac{8.1\%}{\sqrt{E}} \oplus 2.1\%$$

$$\frac{\sigma_{PbGl}(E)}{E} = \frac{5.9\%}{\sqrt{E}} \oplus 0.8\%$$

Drift Chamber

Single wire resolution: 165 μm

- \Box Central arm acceptance: $|\eta| < 0.35$, $\Delta \phi 2 \times 90^{\circ}$
- Electromagnetic Calorimeter: measure photons and π^0 , merging effect minimal up to ~15 GeV
- □ Drift and Pad Chambers: measure h±.
- ☐ Beam-Beam counters:
 - Determine collision centrality/vertex position
 - Minimum bias trigger

Measure γ_{dir} -h in PHENIX: Extract Jet Signals

Background sources:

- Particles from two unrelated jets
- One jet-particle and one non-jet particle
- Two non-jet particles

Combinatorial pairs that are not associated with the same jet or the same hard scattering

2-source model

$$\boxed{\frac{1}{N_{trig}^{\gamma}}\frac{dN^{\gamma-h}}{d\Delta\phi} = Y(\Delta\phi)} \longrightarrow \text{Per-trigger yield}$$

$$Y \propto C(\Delta\phi) - b(1 + 2\langle v_2^{\gamma} \rangle \langle v_2^h \rangle \cos 2\Delta\phi)$$
Norm Bkg(Flow)

 $\frac{dN_{real}^{\text{pair}}/d\Delta\phi}{dN_{\text{mix}}^{\text{pair}}/d\Delta\phi}$

FG: detector acceptance corrected correlations

Event mixing

- ✓ Correct for detector acceptance
- ✓ Determine background level

Background pairs are subtracted for both $Y_{\text{inclusive}}$ and Y_{decay}

Measure γ_{dir} -h in PHENIX: Extract γ_{dir} -h

Subtract Y_{decay} from $Y_{inclusive}$ to get Y_{direct} using statistical subtraction

$$Y_{\pi^0} \to Y_{decay}$$

Statistical subtraction

$$Y_{dir} = \frac{R_{\gamma} Y_{inc} - Y_{dec}}{R_{\gamma} - 1}$$

$$R_{\gamma} = N_{inc}/N_{dec}$$

Direct photon – any photon that is not from a decay process

Measure γ_{dir} -h in PHENIX: Extract γ_{dir} -h

- NLO effects
- $p_T^{\gamma} pprox p_T^{jet}$?
- In p+p, d+Au and p+A collisions, decay photon tagging and an isolation cut is applied event-by-event
 - Improve signal-to-background
 - Reduce non-prompt photons
 - Improve uncertainties
- Remaining decay photons get removed by a statistical subtraction

$$Y_{dir}^{iso} = \frac{1}{R_{\gamma}^{eff} - 1} \cdot \left(R_{\gamma}^{eff} \ Y_{inc}^{miss,iso} - Y_{dec}^{miss,iso} \right) \\ R_{\gamma}^{eff} \equiv \frac{N_{inc} - N_{decay}^{tag} - N_{inc}^{niso}}{N_{dec}^{miss,iso}}$$

0.05

Tagged: decay photons that were tagged as coming from decays

Missed: decay photons that could not be tagged

Non-Isolated: decay or direct photons that were removed by the isolation cut or tagging cut

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$
w tagging

w/o tagging

Measure γ_{dir} -h in Au+Au

• Combine 4.4 billion minimum bias Au+Au data from 2011 to previous measurement (from 2007 and 2010)

p+p points below $\Delta \phi \le 1$ rad are not shown, due to the photon isolation cut on the near-side.

Measure Ydir-h in Au+Au

Away-side yield modification in Au+Au

p+p points below $\Delta \phi \le 1$ rad are not shown, due to the photon isolation cut on the near-side.

How do things look in d+Au?

Measure jet fragmentation function

$$p_T^{\gamma} \approx p_T^{jet} \qquad z_T = \frac{p_T^h}{p_T^{\gamma}} \qquad \Longrightarrow \qquad D_q(z_T) = \frac{1}{N_{evt}} \frac{dN(z_T)}{dz_T}$$

$$\xi = \ln(1/z_{\mathrm{T}})$$

$$I_{AA} = rac{Y_{AA}}{Y_{pp}} \sim rac{D_{AA}(z_T)}{D_{pp}(z_T)}$$

Modification in Au+Au! Suppression in low ξ and enhancement in high ξ

Transition from suppression to enhancement at ξ $^{\sim}1$

In d+Au, no significant modification

$$I_{dA} = \frac{Y_{dA}}{Y_{pp}}$$

Where does the transition occur?

Transition from suppression to relative enhancement: $\xi \sim 1.2$ at RHIC?

Where does the transition occur?

Transition from suppression to relative enhancement:

 $p_{T,assoc} \sim 3 \text{ GeV/c}$ at LHC

 $p_{T,assoc} = ?$ at RHIC

Are we seeing a redistribution of energy within the jet or medium response?

Where does the transition occur?

Transition from suppression to relative enhancement:

 $p_{T,assoc} \sim 3 \text{ GeV/c at LHC}$

 $p_{T,assoc} = ?$ at RHIC

Fixed ξ or fixed $p_{T,assoc}$?

Are we seeing a redistribution of energy within the jet or medium response?

Fixed ξ or fixed $p_{T,assoc}$?

Fixed ξ or fixed $p_{T,assoc}$?

Does not look like fixed ξ

For enhancement vs p+p: $p_{T,assoc} \sim 1-2 \text{ GeV/c (?)}$

Soft particles enhanced at high ξ compared to low ξ

Effect most visible for softest jets and full away-side integration range

Are we seeing the medium response to the jet?

Soft particles enhanced at high ξ compared to low ξ

Effect most visible for softest jets and full away-side integration range

Are we seeing the medium response to the jet?

Particle yields enhanced at larger angle with respect to the away-side jet axis.

Kinematic dependence of enhancement

- \square Relative enhancement show p_T dependence
- <u>Softer jets: more broadened</u> ->particles produced from jet-induced medium excitations?
- ☐ Harder jets: more collimated ->particles more correlated with the jet?
 - Consistent with observation of minimal jet shape modification at LHC

Comparisons to theory

Transition not at fixed ξ

Linear Boltzmann Transport

- kinetic description of parton propagation
- hydro description of medium evolution
- track thermal recoil partons & their further interactions in medium

Jet transport in medium + jet induced medium excitations

- He, Luo, Wang and Zhu, arXiv: 1503.03313v2 (2015)
- He, Luo, Wang and Zhu, arXiv:1503.0331;

Modified Leading Log Approximation

Modeling the energy loss in the medium as an increased parton splitting probability

- Borghini and Wiedemann, arXiv: hep-ph/0506218 (2005)

γ_{dir} -h in p+p and p+A

New measurement

- \rightarrow p+p at \sqrt{s} =510 GeV (2013)
- ightharpoonup p+Au at \sqrt{s} = 200 GeV (2015)

- π⁰-h near-side yields larger than the away-side yields
 trigger bias
- For the same p_T^{trig}, larger associated yields observed in π⁰-h compared to γ_{dir}-h
 → π⁰ triggers sample larger jet energy than direct photons.

 γ_{dir} -h points below $\Delta \phi < 1$ rad are not shown, due to the photon isolation cut on the near-side.

Ydir-h in p+p and p+A

Nearly back-to-back two particle angular correlations give sensitivity to initial- and final-state transverse momentum k_T and j_T

Perturbative transverse-momentum-dependent (TMD) evolution, which comes directly from the generalized TMD QCD factorization theorem, predicts increasing momentum widths with hard scale of interaction.

Ydir-h in p+p and p+A

γ_{dir} -h in p+p and p+A

Explore centrality dependence in p+A

- \square In p+Au collisions, centrality dependence of the Gaussian widths as a function of p_T^{trig} in π^0 -h measurement is observed.
- ☐ Centrality dependence is also present in p+Al collisions not as strong as in p+Au.
- \square Effects from k_T broadening? Multiple scattering?

Summary

- Modification to effective fragmentation function is observed in Au+Au collisions using γ_{direct} -h correlation measurement.
- Variation of away-side integration range suggests low p_T jet broadening in addition to enhancement at low $p_{T,h}$.
- Results from higher statistics in Au+Au hint that the awayside jet modification is due to medium response.
- In d+Au collisions, no significant modification to yield is observed, suggesting minimal CNM effect.
- p+p collisions at 510 GeV effects due to factorization breaking of nonperturbative functions?
- π^0 -h correlations in p+A collisions show centrality dependence of the nonperturbative widths. Interpretations ongoing!

Summary

- Modification to effective fragmentation function is observed in Au+Au collisions using γ_{direct} -h correlation measurement.
- Variation of away-side integration range suggests low p_T jet broadening in addition to enhancement at low $p_{T,h}$.
- Results from higher statistics in Au+Au hint that the awayside jet modification is due to medium response.
- In d+Au collisions, no significant modification to yield is observed, suggesting minimal CNM effect.
- p+p collisions at 510 GeV effects due to factorization breaking of nonperturbative functions?
- π⁰-h correlations in p+A collisions show centrality dependence of the nonperturbative widths. Interpretations ongoing!
 Thank you!